
Chapter 2

Discretization of some
simple PDE’s

In this chapter we discuss a finite volume discretization for some simple problems.
As we see next, the 1D is in the core of 2 and 3D computations and therefore we
give much attention to the 1D problem where things are much simpler.

2.1 Finite volume discretization in 1D
We consider solving 1D PDE’s in space-time and boundary value ODE’s. The model
problem we discuss is

d

dx

�
m

du

dx

�
= q (2.1)

u(0) = uBC; u
�(1) = 0

The conductivity u is assumed to be piecewise constant with possible jumps.
Before we discuss numerical methods for the solution of the problem it is

important to discuss the properties of the solution. This is particularly important
if m has jumps. Note that in this case using the product rule to open the brackets
is wrong! Since m has jumps, u

�(x) must also has a jump. These jumps compensate
for the jumps in m such that the product is smooth. Therefore u

��(x) is not well
defined and one should avoid opening the brackets.

A different way to look at the same system is to write it in first order form

d

dx
J = q (2.2a)

m
−1

J −
du

dx
= 0 (2.2b)

u(0) = 1; J(1) = 0

Where we introduced the “flux” J(x). Note that J is smooth, that is, it has one
derivative (at least). One may wonder why to divide the second equation in m. This
will be explained next. The equation Eq. (2.2b) is also refers to as the constitutive
relation.

9

10 Chapter 2. Discretization of some simple PDE’s

uGhost (m, u)k+ 1
2

(m, u)k+ 3
2

Jk−2 Jk−1 Jk Jk+1

Figure 2.1. 1D grid for cell centered discretization

Consider now a grid, in the interval [0, 1] made out of n intervals determined
by the nodal points 0 = x1 < x2 < . . . < xn+1 = 1 . We also note the the size of
each cell as hk+ 1

2
= xk+1 − xk. Consider also the staggered grid in cell centered

[x 3
2

= 1
2 (x1 + x2), . . . , xn+ 1

2
= 1

2 (xn + xn+1)].
We have two options when discretizing the system. We can place u or J in cell-

center or we can place u in the nodes. Here we use the cell-centered discretization.
Nodal discretization can be derived in a similar manor.

Consider the case that J is discretized on the nodes as demonstrated in Fig-
ure 2.1. This is a natural discretization for the first equation Eq. (2.2a). Integrating
the equation over a cell [xk, xk+1] we have

� xk+1

xk

J
�
dx =

� xk+1

xk

q

The left hand side can be integrated analytically. For the right hand side we use
the midpoint method

Jk+1 − Jk = hk+ 1
2
qk+ 1

2
. (2.3)

Next, we need to integrate the constitutive relation equation

m
−1

J =
du

dx
.

It is important to see that if we place J on the nodes then u is naturally dis-
cretized in cell-centers. We can integrate the right hand side analytically obtaining

� x
k+ 1

2

x
k− 1

2

m
−1

J dx = uk+ 1
2
− uk− 1

2
.

To integrate the left hand side, one requires to be a bit more careful. If u is a smooth
function then one can simply use the midpoint method obtaining the approximation

1
2
(hk+ 1

2
+ hk− 1

2
)m−1

k Jk +O(h) = uk+ 1
2
− uk− 1

2
.

Note that if the grid is not uniform then we obtain only first order since J is not
exactly in the middle of the cell.

2.1. Finite volume discretization in 1D 11

Order: We say that vh converge to u in order h if vh − u = Ch where C

is independent of h

Assume next that m is discontinuous but that it is piecewise smooth, that is
in any interval [xk, xk+1] m is smooth but it may have jumps between cells. In this
case the midpoint method breaks and has to resort to a different approach. One
such approach is to use a one sided approximation to the integral setting

� x
k+ 1

2

x
k− 1

2

m
−1

J dx =
� xk

x
k− 1

2

m
−1

J dx +
� x

k+ 1
2

xk

m
−1

J dx

Each of the integrals involves smooth functions and thus can be approximated by
� xk

x
k− 1

2

m
−1

J dx =
1
2
m
−1
k− 1

2
Jkhk− 1

2
+O(h)

� x
k+ 1

2

xk

m
−1

J dx =
1
2
m
−1
k+ 1

2
Jkhk+ 1

2
+O(h)

Putting it all together we obtain that
� x

k+ 1
2

x
k− 1

2

m
−1

J dx =
1
2
(m−1

k− 1
2
hk− 1

2
+ m

−1
k+ 1

2
hk+ 1

2
)Jk +O(h) (2.4)

Combining Eq. (2.3) and Eq. (2.4) and rearranging terms we obtain

Jk+1 − Jk

hk+ 1
2

= qk+ 1
2

(2.5a)

1
2
(m−1

k− 1
2
hk− 1

2
+ m

−1
k+ 1

2
hk+ 1

2
)Jk = uk+ 1

2
− uk− 1

2
(2.5b)

It is possible to further eliminate J from the system and obtain a system for
u alone

h
−1
k+ 1

2

��
1
2
(m−1

k+ 3
2
hk+ 3

2
+ m

−1
k+ 1

2
hk+ 1

2
)
�−1

(uk+ 3
2
− uk+ 1

2
) −

�
1
2
(m−1

k− 1
2
hk− 1

2
+ m

−1
k+ 1

2
hk+ 1

2
)
�−1

(uk+ 1
2
− uk− 1

2
)

�
= qk+ 1

2

The discretization is simplified when we have a uniform mesh h = h 3
2

= . . . =
hn+ 1

2
. In this case we have that

Jk+1 − Jk

h
= qk+ 1

2
(2.6a)

1
2
(m−1

k− 1
2

+ m
−1
k+ 1

2
)Jk =

uk+ 1
2
− uk− 1

2

h
. (2.6b)

12 Chapter 2. Discretization of some simple PDE’s

It is then common to define the harmonic average of m

mk = (m−1
k− 1

2
+ m

−1
k+ 1

2
)−1

and to rewrite the equation for u as

h
−2

�
mk+1(uk+ 3

2
− uk+ 1

2
) −mk(uk+ 1

2
− uk− 1

2
)
�

= qk+ 1
2

which has the same form as for smooth m.

This is the time to pause and discuss the proposed discretization so far. First,
it is important to realize that given smooth coefficients and uniform grid the dis-
cretization is second order accurate for both m and J . It is possible to show that
in fact our discretization is second order even for non uniform mesh as long as the
mesh is smooth. The discretization is reduced to first order accuracy when discon-
tinuous coefficients are present. Obtaining second order discretization for the case
of discontinuous coefficients is challenging and requires more accurate integration
techniques for equation Eq. (2.2b). Such integration techniques lead to a wider
stencil for J and thus it is not easy to obtain a system for u alone.

To complete the discussion we need to consider the implementation of bound-
ary conditions. Since J is on the boundary a boundary condition on J is straight
forward to implement. A boundary condition on u is slightly more difficult to im-
plement. To do that we use a ghost point outside of our mesh. Then, boundary
condition on u reads

1
2
(uGhost + u 3

2
) = uBC

and therefore
uGhost = 2uBC − u 3

2
.

Using this equation we see that the only equation that needs modification is the
equation for the first cell in Eq. (2.6b) which is rewritten as

1
4
(m−1

3
2

+ m
−1
1
2

) J1 =
u 3

2
− uBC

h
.

The main difficulty when using the formula is that m 1
2

is outside of the grid and
therefore is unknown. There are two options. In some cases one has an analytic
expression for m and therefore m can be estimated directly. In more complex
cases second order extrapolation is need to evaluate m 1

2
. We note that if m 1

2
is

extrapolated using a lower order then some loss of accuracy at the boundary could
be observed.

Some difficulties arise when working with a purely Neumann problem. Recall
that in this case the solution is not well defined. This is because any solution
of the form u + const solves the ODE. The discretization of the purely Neumann
problem leads to a difference matrix where the vector e = (1, 1, . . . , 1)� is in its null

2.2. 1D in practice 13

space. This implies that the linear system has one zero eigenvalue and therefore it
is singular.

First, note that in order to have a solution at all, the right hand side must
not have a part in the null space. For the continuous problem this implies that

� 1

0
q(x) dx = 0.

which translates to
e
�

q = 0.

There are a number of ways to obfuscate the problem. Since u is defined up to a
constant we can set the constant arbitrarily. For example, we can define u1 = 0.
Another more common approach is to define the constant by demanding that

� 1

0
u(x) dx = 0

this leads to the following constraint

h

�

i

ui = 0

that is added to the system.

2.2 1D in practice
We now give our attention to the actual coding of the 1D problem. To do that it is
useful to think about the linear operations as matrices and the fields as vectors, using
sparse linear algebra. Notice that we have the following matrices to be generated

• A difference matrix from cells to nodes, D
n
c : cell centers→ nodes

• A difference matrix from nodes to cells, D
c
n : nodes→ cell centers

• An averaging matrix from cells to nodes, A
c
n : cell center→ nodes

We derive the operators for the case of uniform grid and the extension to nonuniform
mesh is straight forward.

To start, the following code generates the 1D difference from nodes to cell
centers in the interval [0, 1] assuming no boundary conditions on the nodes.

e = ones(n+1,1); h = 1/n;
Dn2c = 1/h*spdiags([-e,e],[0,1],n,n+1);

Similarly, it is easy to generate a finite difference matrix from cell-centers to
nodes

14 Chapter 2. Discretization of some simple PDE’s

Dc2n = 1/h*spdiags([-e,e],[-1,0],n+1,n);

Note that as long as we use “standard” boundary conditions we have that

D
n
c = −(Dc

n)�.

This fits the inner product for two functions that vanish at the boundary

� 1

0
u(x)v�(x) dx = −

� 1

0
u(x)�v(x) dx

The averaging matrix from cell-centers to nodes has a very similar structure.
Using this matrix we can generate a diagonal matrix of m(·) for the cell centered
discretization of m. We first compute the harmonic average of m and then invert
it to obtain the matrix that corresponds to the operator m(·).

Ac2n = 1/2*spdiags([e,e],[-1,0],n+1,n);
S = sdiag(1./(Ac2n*(1./u)));

Note that for this matrix we use nearest neighbor extrapolation for m on the
boundary and therefore only O(h) can be achieved using this discretization.

The right hand side is composed of two parts. First, there is the integrals of
q over the cells. Second, there are contributions from the boundary conditions. To
obtain the contributions from the boundaries we define a matrix B that multiplies
the boundary data and generates a vector of the appropriate size. For the 1D case
the matrix is of size (n + 1)× 2 and it can be written as

B = sparse(n+1,2);
B(1,1) = 1/h; B(end,end) = -1/h;

Multiplying the matrix with the boundary conditions generates the appropri-
ate right hand side.

Putting it all together we obtain the following linear system for u and J

�
diag(Ac

nm
−1)) D

c
n

D
n
c 0

� �
J

u

�
=

�
Bubc

q

�

where for a vector s, we have that s
−1 = [s−1

1 , . . . , s
−1
n]�. This system is referred as

a saddle point system that would be discussed later. For now we note that since the
(1, 1) block is invertible and diagonal it is easy to eliminate J and obtain a system
for y alone

D
c
n diag(Ac

nm
−1))−1

D
c
nu = q + D

c
n diag(Ac

nm
−1))−1

Bubc

Note that assuming Derichlet boundary conditions, the system is symmetric positive
definite (SPD). For the Neumann boundary conditions the system is only positive
semi-definite (PSD). The system is tridiagonal and can be easily solved and u to be
recovered.

2.3. Testing the code 15

m(x) u(x)

Figure 2.2. The conductivity and field for the 1D test case

2.3 Testing the code
The first rule in any code writing is that there must be bugs somewhere and therefore
testing the code is crucial. In fact, we should not consider the code as “correct”
unless it was tested appropriately. In many cases, developing a “good enough” test
can be as complicated as writing the code, however, testing in necessary if we want
to use the code and make some conclusions.

In our case here, we have developed a second order discretization for suffi-
ciently smooth problems. Assuming no bugs exist in the theoretical development
of the discretization we would like to verify that the code behaves like the theory
predicts.

Our test is composed of functions in [0, 1]. Choosing a smooth function for m,

m(x) =
exp(x)

arctan(a(x− 1
2)) + b

.

This choice of m allows us to test different scenarios. For large a, say a = 109, m is
practically discontinuous while for small a, say, a = 1, m is very smooth. We would
like to generate a problem with the characteristics and complexities of a realistic
problem. Choosing

u
�(x) = arctan(a(x−

1
2
)) + b

implies that u
�(x) also has a jump for large a and that mu

� is smooth. Using Maple
and integrating u

�(x) we obtain

u(x) = arctan(ax−
1
2
a)x−

1
2

arctan(ax−
1
2
a)−

1
2a

log((ax−
1
2
a)2 + 1) + bx.

We plot u(x) and m(x) in Figure 2.2.

16 Chapter 2. Discretization of some simple PDE’s

Note that u(x) has a “kink” at 1
2 for large a. We now generate and solve the system

on a sequence of grids ranging from 8 cells to 512 cells. We generate the discrete
operators and compare three quantities. First, we compare the truncation errors
that is, we input the exact solution (evaluated at the appropriate points) into the
equations and recored the errors. Second, we solve the system for the fields and
compare the analytic solution to the computed solution.

The code is as follows

kk = 1;
for n = [8,16,32,64,128,256,512]

h = 1/n;
% nodal grid
tN = linspace(0,1,n+1); tN = tN(:);
% cell centered grid
tC = tN(1:end-1) + diff(tN)/2; tC = tC(:);
% Boundary points
tB = [tN(1); tN(end)];

% define the fields and fluxes
a = 1e0; b = pi/2+0.01;
u = @(t)(atan(a*t - 1/2*a).*t - 1/2*atan(a*t - 1/2*a) ...

-1/(2*a)*log((a*t - 1/2*a).ˆ2 + 1) + b*t);
up = @(t)(atan(a*(t-0.5)) + b);
m = @(t)(1./up(t).*exp(t));
J = @(t)(up(t).*m(t));
rhs = @(t)(exp(t));

% compute operators
e = ones(n+1,1);
Dn2c = 1/h*spdiags([-e,e],[0,1],n,n+1);
Dc2n = 1/h*spdiags([-e,e],[-1,0],n+1,n);
Ac2n = 1/2*spdiags([e,e],[-1,0],n+1,n);
s = Ac2n*(1./sigma(tC));

% correct for conductivity outside of the grid
% (for second order at the boundary)
s(1) = (1/m(h/2) + 1/m(-h/2))/4;
s(end) = (1/m(1-h/2) + 1/m(1+h/2))/4;
S = sdiag(1./s);

% Boundary condition matrix
B = sparse(n+1,2); B(1,1) = 1/h; B(end,end) = -1/h;

% check truncation error
r1 = Dc2n*u(tC) - S*J(tN) - B*u(tB);
r2 = Dn2c * J(tN) - rhs(tC);

% now solve and compare solution error
A = Dn2c*S*Dc2n;
b = rhs(tC) + Dn2c*S*B*u(tB);

uN = A\b; uA = u(tC);
r3 = uA-uN;

% print some info
rho(kk,1:4) = [h,norm(r1,’inf’),norm(r2,’inf’),norm(r3,’inf’)]; kk = kk+1;
fprintf(’%3.2e %3.2e %3.2e %3.2e\n’,...

h,norm(r1,’inf’),norm(r2,’inf’),norm(r3,’inf’));
end

% check convergence rate
fprintf(’\n\n\n Convergence summary\n\n’);
fprintf(’h |r1|_inf |r2|_inf |error|_inf\n\n’);

fprintf(’%3.2e %3.2e %3.2e %3.2e\n’,(rho(1:end-1,:)./rho(2:end,:))’)

2.4. Finite Volume Discretization in 2 and 3D 17

Figure 2.3. Convergence results for the 1D case

Convergence curves for the problem are plotted in Figure 2.3. For this example
we have chosen a = 109 thus we recover the solution for a discontinuous conductivity.
Note that just as the theory predicts, the truncation error for the discretization
of the equation m

−1
J − u

� is linear (behaves as h while the convergence for the
equations J

� = q is of order h
2. A more surprising observation is that although the

first equation is only O(h) accurate (at one point), the overall solution is actually
O(h2). Thus, the fact that we have an inaccuracy over a small manifold does not
heart the overall accuracy.

To summarize the testing stage of code writing we stress that one cannot trust
the code if it did not go through robust testing that shows that the code yields
the theoretical accuracy. Building an appropriate test can be rather complicated
(it can take longer than programming the original code!) but it is mandatory.
Unfortunately, there is much numerical code that is not thoroughly tested. Far
reaching conclusions such as global warming, nuclear storage and more have been
done in the past based on “gently” tested codes. One should be always a bit skeptic
about the code and continue to evaluate it with different use and applications.

2.4 Finite Volume Discretization in 2 and 3D
We now quickly extend the discretization to 3 and 3D. The equivalent equation in
2 and 3D to the equation we have analyzed in 1D is

∇ · m∇u = q (2.7)

or in first order form

∇ · �J = q (2.8a)

m
−1 �J −∇u = 0 (2.8b)

18 Chapter 2. Discretization of some simple PDE’s

(m, u)i,j (m, u)i,j+1

(J2)i,j− 1
2

(J2)i,j+ 1
2

(J2)i,j+ 3
2

(J1)i− 1
2 ,j

(J1)i+ 1
2 ,j

(J1)i− 1
2 ,j+1

(J1)i+ 1
2 ,j+1

Figure 2.4. Staggered grid in 2D

Note that in this case the flux �J , is a vector, �J = [J1, . . . , Jd] where d = 2, 3 is
the dimension of the problem. Equation Eq. (2.8) is referred to as the flux-balance
equation while Eq. (2.8b) is referred to as the constitutive equation. Boundary
conditions are either on u, that is

u∂Ω = uBC

or on �J , that is
(�J · �n)∂Ω = JBC.

Before we discretize the equations we note a few properties of the continuous
variables. First, u is differentiable once in each direction. If m is discontinuous
then u is not differentiable twice in each direction and derivatives such as ux1x1 and
ux2x2 may not exist. On the other hand, since does exist we observe that ∇u may
not be smooth in the normal direction but it is smooth in the tangential direction.
Thus we expect u to have a “kink” normal to an interface but be smooth otherwise.

Second, the vector field �J is smooth in the normal direction, that is J1 is
differentiable in the x1 direction and J2 is differentiable in the x2 direction. On the
other hand, �J may not be differentiable in the tangential direction, that is J1 may
not be differentiable in the x2 direction and J2 may not be differentiable in the x1

direction.
We derive the discretization in 2D and as we see next, the extension to 3D is

straight forward. Consider the cell-center discretization of u on a uniform grid of size
h. The question which rise is, where should we discretize �J? It is straight forward
to see that a natural discretization for �J is on cell faces. This is demonstrated in
Figure 2.4. Thus, we have introduced a staggered grid for �J .

Just as in 1D there are two equations we integrate upon. We start with
the flux-balance equation. We integrate the equation in a box that its center is

2.4. Finite Volume Discretization in 2 and 3D 19

[(x1)i, (x2)j] �

Ωij

∇ · �J dx1 dx2 =
�

Ωij

q dx1 dx2.

Integrating the right hand side we obtain
�

Ωij

q dx1 dx2 = qijh
2 +O(h2).

Next, we use the divergence theorem to integrate the left hand side
�

Ωij

∇ · �J dx1 dx2 =
�

∂Ωij

�J · �n ds = (2.9)

h((J1)i+ 1
2 ,j − (J1)i− 1

2 ,j) + h((J2)i,j+ 1
2
− (J2)i,j− 1

2
) +O(h2)

We now need to integrate the constitutive relation equation. This equation is
actually two equations in 2D

ux1 = m
−1

J1 ux2 = m
−1

J2.

We integrate the first equation over a box around J1 (see Figure 2.4) and the second
equations over a box around J2. It is crucial to recall that ux1 may be discontinuous
at point [(x1)i, (x2)j+1 and therefore, the equation does not mean much pointwise.
This is exactly the same issue we had in 1D and we resolve it in the same way.

� (x2)i+ 1
2

(x2)i− 1
2

� (x1)j+1

(x1)j

ux1 dx1 dx2 =
� (x2)i+ 1

2

(x2)i− 1
2

� (x1)j+1

(x1)j

m
−1

J1 dx1 dx2

Integrating the lest hand side we use exact integration in x1 and the midpoint
method in x2 to obtain

� (x2)i+ 1
2

(x2)i− 1
2

� (x1)j+1

(x1)j

ux1 dx1 dx2 = h(ui+ij − uij) +O(h2)

Integrating the left hand side over x1 is done in the same way as in the previous
section in 1D and we use the midpoint methods in the x2 direction to obtain

� (x2)i+ 1
2

(x2)i− 1
2

� (x1)j+1

(x1)j

m
−1

J1 dx1 dx2 =
1
2
(J1)i,j+ 1

2
(m−1

ij + m
−1
ij+1) +O(h)

Note again that the O(h) assumes a discontinuous m for a smooth m O(h2) is
obtained.

Defining

mij+ 1
2

= 2
�
(m−1

ij + m
−1
ij+1)

�−1

mi+ 1
2 ,j = 2

�
(m−1

ij + m
−1
i+j)

�−1

20 Chapter 2. Discretization of some simple PDE’s

(J1)i+ 1
2 ,j,k

(J3)i,j,k+ 1
2

(J2)i,j+ 1
2 ,k

Figure 2.5. Staggered discretization in 3D

We can eliminate �J from the equations and obtain an equation for u alone

(2.10)
mij+ 1

2
(uij+1 − yij)−mij− 1

2
(uij − uij−1) + mi+ 1

2 ,j(ui+1j − yij)−mi− 1
2 ,j(uij − ui−1,j)

h2
= qij

Boundary conditions are handled exactly as per in 1D by adding ghost points.
Since the discretization is derived by combining 1D discretizations in x1 and x2

boundaries in x1 and x2 are dealt in the same way we dealt with 1D problems.

2.5 Problems in 3D
We now extend the discussion above into more general problems and to 3D. In 3D
there are three main operators of interest that can be used to discretize most linear
PDE’s; the gradient, the divergence and the curl. We now discuss the discretization
of these operators in 3D.

The extension of the staggered discretization proposed in 2D to 3D is slightly
more involved. In principle, we have 4 types of variables. First, for scalar fields we
have cell-centered and nodal discretization. This is similar to the 2D case. A slight
departure from the 2D case is the separation between vector fields that are face and
edge variables which “live” in different location on the grid. While face variables
are assumed to be normal to the cell face edge variables are aligned with the cell
edge. This is demonstrated in Figure 2.5. To derive differential operators we look
at particular discretizations and use the appropriate integral rule.

2.6. Matrix representation in 2 and 3D 21

To derive a discretization of the divergence we look at cell face vectors and
using the divergence theorem obtain that
�

Ωijk

∇ · �J dx dy dz =
�

∂Ωijk

�J · �n ds = (2.11)

h
2
�
(J1)i+ 1

2 ,j,k − (J1)i− 1
2 ,j,k + (J2)i,j+ 1

2 ,k − (J2)i,j− 1
2 ,k + (J3)i,j,k+ 1

2
− (J3)i,j,k− 1

2

�
+O(h2)

To discretize the gradient we consider first a cell center discretization of a
scalar function y. A short central difference which average on cell-faces yield

(ux1)i+ 1
2 ,j,k =

ui+1,j,k − ui,j,k

h
+O(h2)

(ux2)i,j+ 1
2 ,k =

ui,j+1,k − ui,j,k

h
+O(h2)

(ux3)i,j,k+ 1
2

=
ui,j,k+1 − ui,j,k

h
+O(h2)

Material averaging mirrors the one we had in 2D and can be summarized as
follows

• We consider material averaging through integration.

• Using the same arguments as in 2D, harmonic averaging is needed for the first
order Poisson equation if u is in cell centers and �J is on the faces.

2.6 Matrix representation in 2 and 3D
In order to program problems in 2 and 3D it is useful to consider the matrix repre-
sentation of the operators. As we see next, the matrices can be obtained by looking
at the 1D case. For the simplicity of the discussion we assume that we discretize
the functions on a uniform mesh with equal spacing and equal number of points in
all directions.

A key property that we heavily use in our derivation is as follows. Let Y be
a 2D array, the discretization of the function u(x1, x2). We also define (with some
abuse of notation) the vector

u = vec(U)

That is, if U is an N ×M matrix then

u(k) = U(i, j) k = (M − 1)× i + j

Then

vec(AUB
�) = (B ⊗A)u (2.12)

where ⊗ is the kronecker product of matrices

A⊗B =




a11B . . . a1nB

. . .
an1B . . . annB





22 Chapter 2. Discretization of some simple PDE’s

To see how this can be used in order to generate a matrix representation of
say ux1 where y is a discretization of a 2D function. Consider the 2D version of u,
that is the matrix Uij = u((x1)i, (x2)j). Let D be the 1D derivative matrix

D =
1
h




−1 1

. . .
−1 1





Let us look at the product

DU =
1
h




−1 1

. . .
−1 1








U11 U12 . . .

U21
. . .

Un−1,n Unn



 =

1
h




U21 − U11 U22 − U12 . . .

U31 − U21
. . .

Un−1,n − Un−2,n Unn − Un−1,n





If we organize the directions such that x1, x2 is the same as the i, j directions on the
matrix then we can write the difference matrix which corresponds the the operator
∂x1 in 2D as

∂x1 ≈ Dx1 = I ⊗D

It is easy to verify that the difference matrix in 2D for the x2 direction can be
written as

∂x2 ≈ Dx2 = D ⊗ I

Combining them together we obtain a discrete representation for the gradient in 2D

∇ ≈

�
I ⊗D

D ⊗ I

�

Thus, if we can program the 1D difference matrix then, using the kronecker product
we can easily obtain a matrix representation in 2D.

The extension to 3D is rather straight forward

∇ ≈




I ⊗ I ⊗D

I ⊗D ⊗ I

D ⊗ I ⊗ I





To code this we first write a small code for the 1D case. The code can deal
with either 1D cell-centered discretization with Neumann BC or with 1D Nodal
discretization with Derichlet boundary conditions.

2.6. Matrix representation in 2 and 3D 23

function[D] = ddx(n,opt)

h = 1/n;
switch opt

case ’nodal’ % second order approximation on nodes with Derichlet BC
D = 1/h*spdiags([-ones(n,1),ones(n,1)],-1:0,n,n-1);
D(1,1) = 2*D(1,1); D(end,end) = D(end,end)*2;

case ’cell centered’ % second order approximation on cells with Newman BC
D = 1/h*spdiags([-ones(n,1),ones(n,1)],0:1,n-1,n);

otherwise
error(’opt = nodal or cell centered’)

end

Given the 1D code we can now quickly get the differential operators by com-
bining the derivatives in the different directions and kronecker products

function[DIV] = getFaceDivergenceMatrix(n1,n2,n3)

D1 = kron(speye(n3),kron(speye(n2),ddx(n1,’nodal’)));
D2 = kron(speye(n3),kron(ddx(n2,’nodal’),speye(n1)));
D3 = kron(ddx(n3,’nodal’),kron(speye(n2),speye(n1)));

% DIV from faces to cell-centers
DIV = [D1 D2 D3];

and the gradient is the transpose of the divergence.

The discretization is not complete without material averaging functions. We
assume that material properties are given in cell centers and that they need to get
averaged to the faces Again, we use kronecker products to obtain the averaging
matrices. First, we consider 1D averaging

function[A] = getCCtoNode(n)

A = spdiags(0.5*ones(n+1,2),-1:0,n+1,n);
A([1,end]) = 1;

Using the averaging matrices we generate an equivalent to the mass matrix.
For example, a mass matrix that multiplies face variables can be generated by the
following lines

function[Mass] = getFaceMassMatrix(m1,m2,m3)

[n1,n2,n3] = size(m1);
% averaging matrices cell centers -> faces
Acf1 = kron(speye(n3),kron(speye(n2),getCCtoNode(n1)));
Acf2 = kron(speye(n3),kron(getCCtoNode(n2),speye(n1)));
Acf3 = kron(getCCtoNode(n3),kron(speye(n2),speye(n1)));

Mass = blkdiag(sdiag(Acf1*m1),sdiag(Acf2*m2),sdiag(Acf3*m3));

Note that in the above matrix we have allowed for anisotropy, that is, we have
used three different materials for the three different directions.

Finally, we use the “machinery” above to discretize the Helmholtz equation
in 3D Recall that the equation can be written as

∇ · (ρ +
β

iω
)−1
∇p + (ω2

κ− iωα)p = ω
2
s

24 Chapter 2. Discretization of some simple PDE’s

function[H] = get3DHelmholtz(kappa,rho,omega,n,L)
% Fourier transform of
% [rho][U] - [-beta -grad][U] + [fu]
% [kappa][p]_t - [-div -alpah][p] [ft]

h = [L(1)/n(1) L(2)/n(2) L(3)/n(3)];

% Grad and div
grad = getGradientMatrix(n,h);
%%%% PML Attenuation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% number of PML cells
nbc = 5;

alpha = 3e-9*ones(n(1),n(2),n(3));
alpha(nbc+1:end-nbc, nbc+1:end-nbc, nbc+1:end-nbc) = 0;
alpha(nbc+1:end-nbc, nbc+1:end-nbc, 1:end-nbc) = 0;

betax = alpha/2.*rho./kappa;
betay = betax;
betaz = betax;

betax(nbc+1:end-nbc,:,:) = 0;
betay(:,nbc+1:end-nbc,:) = 0;
betaz(:,:,1:end-nbc) = 0;

%%%%%%%%%%%%%%%%%%%%%%%
% generate material properties matrices
rho = getMassMatrix(rho,rho,rho);
kappa = spdiags(kappa(:),0,n(1)*n(2)*n(3),n(1)*n(2)*n(3));

alpha = spdiags(alpha(:),0,n(1)*n(2)*n(3),n(1)*n(2)*n(3));
beta = getFaceMassMatrix(betax,betay,betaz);

H = grad’* ((rho + (1i*omega)ˆ(-1)*beta)\ grad) - omegaˆ2*kappa + 1i*omega*alpha;

2.7 Discretizing the wave equation
We now discuss the discretization of the wave equation in time. We do not discuss
time discretization methods but rather summarize a ”standard” solution techniques
that is commonly used for the wave equation. We discretize the wave equation in
space time

∆t
−1

κ(pn+1
− p

n) = G
�

u
n
− αp

n (2.13a)
∆t

−1
ρ(un+1

− u
n) = Gp

n+1
− βu

n (2.13b)

which can be solved for p
n+1 and u

n+1 using the previous values p
n and u

n. Since
κ and ρ are diagonal matrices this calculation can be done pointwise2. In the
equation above G is the discretization of the gradient and G

� is the discretization
of the divergence. The parameters α and β are PML parameters that attenuate the
wave over layers that are close to the boundary.

Note that we can write this as a system
�

∆t
−1

κ 0
−G ∆t

−1
ρ

� �
p

u

�n+1

−

�
∆t

−1
κ− α −G

�

0 ∆t
−1

ρ− β

� �
p

u

�n

= 0 (2.14)

There are some important points when considering the wave equation in the
context of optimization. One interesting aspect is stability of the solution of the

2For finite element these are matrices and the computation can be more difficult

2.8. A note about Finite Element discretization 25

problem. It is well known that for the above system to be stable one requires to
have the CFL condition that reads

κ

ρ
∆t ≤ ∆x

When solving the forward problem it is easy to determine an appropriate ∆t but
for the inverse problem, we do not have κ and thus may need to adjust ∆t when
κ is changing. Changing ∆t while using some optimization algorithm may lead to
other complications (that are discussed later) and thus care must be taken when
designing algorithms for the solution of the problem.

2.8 A note about Finite Element discretization
In the above we discussed a finite volume discretization of some simple PDE’s.
Another common way to discretize such PDE’s is by finite element methods. We
now shortly review finite elements for the elliptic problem and discuss some of the
implementation issues that are special to parameter identification.

We consider the DC resistivity equation in weak form of finding a minimizer
to the functional

J (u) =
�

Ω

1
2
(∇u)�m(∇u)− uq dV

Assuming that u is divided into elements and that

u(x) =
�

e

u
e(x)

and that on each element it has the form

ue =
�

j

u
e
jϕ

e
j(x)

where u
e
j are the coefficients and ϕ

e
j(x) are some basis function over the element.

When substituting u into the integral we obtain a discrete representation of
the integral.

Jh(u) =
�

e

me
1
2
(ue)�Aeu

e
− (qe)�Meue

where we abuse the notation for u between continuous and discrete and assumed
that m is piecewise constant over each element. The matrix Ae is the local stiffness
matrix and it is given by

(Ae)ij =
�

Ωe

∇ϕi(x) · ∇ϕj(x) dV (2.15)

Differentiating J with respect to u we obtain a discretization to the forward problem

A(m)u = q

26 Chapter 2. Discretization of some simple PDE’s

where
A(m) =

�

e

meAe

The latter representation is important for optimization and will play a role later in
the discussion. In particular, we note that assuming some finite element geometry (a
mesh) changing the coefficients on the mesh can be done easily if we save the element
matrices. Most FEM codes tend to assemble the stiffness matrix and not keep the
individual, element stiffness matrices. In parameter estimation the parameter m

changes from iteration to iteration. Reassembling the matrix can take some time
and therefore it is recommended to keep the individual stiffness matrices.

2.9 A note about solving the linear systems
The discretization of the problems discussed above give rise to linear systems to
be solved. The numerical solution of linear systems is a huge topic by itself and
we do not intend to cover it in this course. We will heavily use direct factorization
methods, iterative methods such as preconditioned conjugate gradient (PCG) and
other Krylov methods. We refer the reader to [9, 3, 6, 13] for more details.

In this section we discuss some specific aspects of the solution techniques that
are common to parameter estimation problems.

First, and most important, in many parameter estimation problems the PDE
is solved many times. For example, in impedance tomography the linear system has
to be solved for at least Ns × 2 where Ns is the number of sources, and in many
cases many more times than that (this is due to the estimation of the gradients and
Hessians). For many problems Ns is a rather large number and could easily reach to
a few thousands. For such cases the linear systems are solved tens or even hundred’s
of thousands of times! For these applications, if possible, direct factorization is,
by far, the best way to deal with the linear system. For problems in 1D and
for most problems in 2D direct factorization methods can be easily used however,
for problems in 3D and 4D (space-time) it is not always possible to factorize the
systems. Recently, parallel direct solvers have been available, for example MUMPS
[1] and superLU [7]. Given the appropriate computational resources, these codes
can solve problems with millions of unknowns by factorization. For problems in 3D
such solvers are preferable.

For many problems, the memory requirements of direct methods is a pro-
hibitive factor and iterative methods must be used. Iterative methods typically
require a good preconditioner which is rather problem dependent. For the exam-
ples in the course we use some rather basic preconditioners such as Jacobi and
Gauss-Seidel. We emphasize that these are not necessarily good proconditioners
but they are useful and very easy to code. Optimal preconditioners are typically
based on multigrid methods but they can be difficult to program and implement.

For large problems with multiple right hand sides when iterative methods
are used it is sometimes possible to combine direct and iterative methods. For
example, using ILU as a preconditioner with a very low drop-tolerance or domain
decomposition with very large domains, where the LU factorization on each domain

2.10. Problems for chapter 2 27

is saved. Designing preconditioners for the forward problem has to be done for each
problem individually and we do not discuss this further here.

2.10 Problems for chapter 2
1. Write a code to solve Poisson equation with variable coefficients in 3D and

provide testing to see that the code is working appropriately

2. A forth order finite difference operator in 1D has the form

(ux)i+ 1
2

=
1
h

�
1
24

ui−1 −
9
8
ui +

9
8
ui+1 −

1
24

ui+2

�

which, for nodal discretization, can be discretized as

D = 1/h*spdiags([1/24*ones(n+1,1),-9/8*ones(n+1,1), ...
9/8*ones(n+1,1),-1/24*ones(n+1,1)],-1:2,n,n+1);

Use this 1D discretization to generate a 3D discretization for the Poisson
equation with variable smooth coefficients. Show that your discretization is
indeed 4th order.

3. In some cases it is easier to work directly with the discretization of the second
derivative.

(a) Derive a 1D second order approximation to the operator ∂xx with De-
richlet BC

(b) The Stokes system for (�u, p) = (u1, u2, p) reads

∆u1 + px = f1 ∆u2 + py = f2 ∇ · �u = 0

Discretizing �u on cell faces and p in cell centers, derive a second order
discrete approximation to the system. Code and test it. This famous
discretization is refers to as Marker And Cell (MAC).

28 Chapter 2. Discretization of some simple PDE’s

