
Chapter 3

Sensitivity Calculation

In the previous chapters we assumed that we have a partial differential equation

c(m, u) = 0

that involves the fields (or states) u and the “control” parameters (or model) m.
We assumed that the model m was known and that we need to solve for the fields
u. In this chapter we begin with the inverse problem, that is, the calculation of m

given the field (or its projection), u.
As a first and important task we need to evaluate the sensitivity of the fields

with respect to changes in the model m. In this chapter we discuss in detail how to
compute the sensitivities for different problems.

3.1 The concept of sensitivity and the basic equation
Assume the simulation c(m, u) = 0. Given the parameters m we can solve for u as
a function of the parameters m that is u = u(m). Given u(m) we obtain the data
by another operation. We assume that the data is given by a linear operation that
is

d = Qu(m).

We can think about d as a function of m that is d = Qu(m). The question is,
how does d change when we change m. Taylor’s series reads

Qu(m + hv) = Qu(m) + hQ
∂u

∂m
v + O(h2

�v�).

Obviously, for small h the nonlinear problem can be approximated by the linear
one. We now define the sensitivity matrix

J = Q
∂u

∂m
.

The matrix gives an idea to the components in the model that yield (at least locally)
large changes to the data.

29

30 Chapter 3. Sensitivity Calculation

An important tool that allows to analyze the sensitivities is the Singular Value
Decomposition SVD. We assume that the number of data is N which is smaller than
the number of parameters M . The SVD of an N ×M matrix J is a decomposition

J = UΛV
� =

N�

i=1

λiuiv
�
i

Here U = [u1, . . . , uN] is an N ×N left singular vectors orthogonal matrix UU
� =

U
�

U = IN , Λ = diag(λ1, . . . , λN) is an N × N diagonal matrix with the singular
values λ1 ≥ λ2 ≥ . . . ≥ λN and V = [v1, . . . , vN] is an M × N orthogonal matrix
V
�

V = IN , of the right singular values.
Assume now a perturbation in the model w. Then we can decompose w into

components

w =
N�

i=1

αivi + w
orth

The component w
orth contains any components that are not spanned by V which

implies that
Jw

orth = UΛV
�

w
orth = 0.

We therefore see that we can change m in the direction w
orth without any change

in the data and therefore the data fitting can be done by infinite number of models.
We will address this problem in the next section.

Now consider the singular vectors that correspond to the large singular values.
A small change in these vectors lead to a large change in the data, that is, the
problem is sensitive to change in these directions. While the sensitivity matrix is
important for the inverse problem it is also important for better understanding the
forward problem. In many cases one can learn about the important components
in the model by looking at the sensitivities. We will demonstrate it in an example
later in this chapter.

3.2 Computation of the sensitivities - general
formulation

Computing the sensitivities is rather straight forward. We have

c(m, u) = 0

and therefore
∇mc(m, u)δm +∇uc(m, u)δu = 0

Note that ∇mc(m, u) and ∇uc(m, u) are matrices. Furthermore, assuming that the
forward problem is solved by a Newton-like method, the matrix ∇uc(m, u) is the
Jacobian of the forward and assuming that the forward is well posed it is invertible.
Manipulating we obtain

δu = −(∇uc(m, u))−1
∇mc(m, u)δm

3.3. Computation for linear forward problems 31

and therefore we obtain the formula for the sensitivities

J = −Q(∇uc(m, u))−1
∇mc(m, u)

This is the fundamental sensitivity equation.
The computation of the sensitivities requires the computation of two matrices

∇uc(m, u) and ∇mc(m, u). We now discuss a number of problems and demonstrate
how to compute these matrices in practice. The reader is advised to skip to the
section of differentiating linear algebra expressions to brush on linear algebra and
multivariable calculus.

3.3 Computation for linear forward problems
Consider the forward problem of the form

c(m, u) = A(m)u− q = D
� diag(Avm)Du− q = 0

This forward problem is obtained from the nodal discretization of the PDE ∇ ·

m∇u = q. Differentiating we obtain

∇u(A(m)u− q) = A(m).

To differentiate with respect to m we manipulate the equation

∇m(A(m)u− q) = ∇m(D� diag(Avm)Du) = ∇m(D� diag(Avm)(Du)) =
∇m(D� diag(Du)Avm) = D

� diag(Du)Av

Using the expressions above we obtain that the sensitivities are

J = −QA(m)−1
D
� diag(Du)Av

A similar example is the computation of the sensitivities of the wave field
given by Helmholtz equation to its parameter

c(m, u) = A(m)u− q = (L + w
2 diag(m))u− q

A similar calculation yields

∇uc(m, u) = (L + w
2 diag(m)).

The calculation of the derivatives with respect to m requires slightly more effort

∇mc(m, u) = ∇m((L + w
2 diag(m))u) = w

2
∇m(diag(u)m) = w

2 diag(u).

and combining we obtain

J = −w
2
QA(m)−1 diag(u)

32 Chapter 3. Sensitivity Calculation

Although the computation of each problem is slightly different it is evidently
that the calculation in general leads to the following formula

J = −QA(m)−1
G(m, u)

where
G(m, u) = ∇m(A(m)u).

Thus to compute the sensitivities one requires to compute the inverse of the forward
problem matrix times either G or Q

�. This may make the computation of the
sensitivities difficult if not impossible. We will discuss this in the next.

3.4 Sensitivity computation for time dependent
problems

Maybe the most involved computation of sensitivities arises in time dependent prob-
lems. We recall the wave equation which we rewrite

�
∆t
−1

κ 0
−∇h ∆t

−1
ρ

� �
p

u

�n+1

−

�
∆t
−1

κ− α −∇�h
0 ∆t

−1
ρ− β

� �
p

u

�n

= 0 (3.1)

Consider now a vector y = [p1
, u

1
, . . . , p

n
, u

n. The forward problem can be written
as

A(κ)y =





A1(κ)
A2(κ) A1(κ)

A2(κ) A1(κ)
.

A2(κ) A1(κ)









y1

y2
...

yn




=





−A2(κ)y0

0
...

0




= q

(3.2)

where

A1(κ) =
�

∆t
−1

κ 0
−∇h ∆t

−1
ρ

�
and A2(κ) =

�
∆t
−1

κ− α −∇�h
0 ∆t

−1
ρ− β

�

Notice that in order to “solve” A(κ)y = q we invert the matrix by starting from the
first discretized time and going forward in time. Another important observation is
that the matrix A

�(κ) has the form

A
�(κ) =





A1(κ)� A2(κ)�
A1(κ)� A2(κ)�

.
A1(κ)� A2(κ)�

A1(κ)�





This implies that the solution of the adjoint system A
�(κ)y = z is done by starting

from the last time step and going backward in time. Solving this system is sometimes
refer to as reverse time migration. We discuss this in the chapter.

3.5. Computation of the Jacobians 33

3.5 Computation of the Jacobians
The The examples above are rather generic in nature. For the constraint c(m, u) =
0, the Jacobian ∇uc is calculated in order to solve the forward problem, and thus
is usually available. On the other hand, the Jacobain ∇mc is not required for the
solution of the forward problem and therefore need to be evaluated whenever an
inverse problem is to be solved. In some cases, automatic differentiation can be used
but otherwise, this can be complicated to compute and an intimate understanding
of the forward modeling code is needed.

There are some cases, that require special consideration. Consider for example,
a simple advection problem

�uxx + mux = 0

with some appropriate boundary conditions. This is a linear PDE in u and m. Now,
consider the upwind discretization of the problem that reads

�

h2
(uj+1 − 2uj + uj−1) +

1
h

(max(mj , 0)(uj − uj−1) + min(mj , 0)(uj+1 − uj)) = 0

Clearly, the discretization is non-differentiable with respect to m and thus one can
expect some difficulties. In these cases, our convention of discretize first then opti-
mize is questionable. If we still wish to work using this strategy then It is possible
to introduce some smoothing to the max and min functions. Nonetheless, this sim-
ple example demonstrates the pitfalls in our approach so far. It also highlights the
intimate understanding of the discretization of the forward problem.

For finite volume discretization, the computation of the derivatives can be
done by differentiating matrix-vector product. It is important to note that for finite
element computation the Jacobians can be calculated by looking at the element
matrices. For example, for the DC resistivity problem we had that the stiffness
matrix can be written as

A(m)u =
�

e

meAeue

where Ae are local element matrices, me is the physical property of that element
and ue = Peu is a vector that contain the local degrees of freedom over the element.
It is therefore clear that

∂

∂mj
(A(m)u) =

∂

∂mj

�
�

e

meAeue

�
= Ajuj

Since Aj does not depend on m but rather on the mesh alone, it makes sense to
save all the element matrtices if the sensitivity computation is required many times
in the course of the solution of the problem.

34 Chapter 3. Sensitivity Calculation

3.6 Working with sensitivities in practice

3.6.1 Computing the sensitivities

The sensitivity matrix is large and composed of three matrices.

J(m, u) = Q (∇uc)−1
∇mc.

The matrices Q,∇mc and ∇uc are typically sparse however, the matrix (∇uc)−1)
is almost always dense. Therefore, the sensitivity matrix is typically dense and
very large. Computing the matrix in practice is therefore impossible for most large
scale problems. Nonetheless, the actual computation of the sensitivity is not

needed in most practical cases. What is needed is a matrix-vector products of
the form Jv and J

�
w. For that note that one can compute the product in three

steps. For the forward problem we multiply the vector v by ∇mc. In the second
step we solve the linear system (∇uc)y = ∇mc v. In the last step we set Jv to be
the product −Qy. For the transpose we start by computing Q

�
w we then solve the

system (∇uc)�y = Q
�

w and finally set the product J
�

w to −(∇mc)�y.
Note that the calculation of the sensitivity matrix vector product and its

adjoint requires solving a system equivalent to a linearized forward or transposed
problem. This is not a trivial task. If the calculation is required many times then
investing in good preconditioners can be crucial. Assume for a moment that we are
able to compute the LU factorization of the forward problem. In this case the cost
of each matrix vector product is the cost of forward-back-substitiotion. If a single
product is needed then the cost of the factorization dominates the computation.
However, if the number of sensitivity matrix vector product is large, one may want to
reconsider and compute either an exact or an approximate factorization if possible.
We will discuss this detail in the next chapters.

Although computing sensitivities is almost never done in practice there are
some rare cases where for one reason or another the sensitivity matrix is desirable.
This is typically the case where either the size of the model or data is very small.
It is important to remember that there are two ways to compute the matrix. Since
J = −Q(∇uc)−1∇uc one can compute it is

J = −Q((∇uc)−1
∇uc)

That is compute the matrix (∇uc)−1∇uc and then multiply by Q or that we com-
pute

J = −(∇mc
�(∇uc

−�
Q
�))�

That is, compute the product (∇uc)−�Q
� multiply by ∇mc

� and then transpose
the result. The first approach is sometimes referred to as the forward calculation
and the second approach is referred to as the backward calculation. If the number
of parameters m is very small then the forward calculation is obviously preferable
and on the other hand if the number of data is small then the backward evaluation
is better.

3.6. Working with sensitivities in practice 35

3.6.2 Dimensionality reduction using Lanczos bidiagonalization

In the course of the solution of parameter estimation problems one often requires to
solve systems that involve the sensitivity matrix J and its adjoint J

�. We have seen
that it is possible to compute the sensitivity matrix-vector product by solving the
forward problem. It is possible to use these products to compute an approximate
decomposition of the sensitivity matrix. Such decomposition is used in methods
such as Least Squares QR (LSQR) for the solution of systems of the from Jz = b.
Such methods can also be used in order to approximate the sensitivity matrix for
other reasons that are discussed later in the notes.

The basic idea is to use a Krylov space of the form

K = {J
�

b, (J�J)J�b, . . . , (J�J)k
J
�

b}

in order to approximate J by the decomposition

J ≈ UkBkV
�
k

where Uk = [u1, . . . , uk], Vk = [v1, . . . , vk] are matrices of orthogonal vectors and
Bk is a bidiagonal matrix of the form

Bk =





b11

b21 b22

.
.

bk−1,k bk,k





If this decomposition reminds the reader the SVD it is not accidental. Indeed,
the singular values of Bk approximate the singular values of J . Although it is
difficult to prove the exact connection between the SVD and the vectors obtained
by the Lanczos process it is well documented that the Lanczos vectors approximate
the singular vectors of J . The Lanczos process can be summarized as follows:

function [U,B,V] = lancBiDiag(J,d,k,L,tol)
%LANCBIDIAG Lanczos bidiagonalization.

[m,n] = size(J); [n,l] = size(L);
U = zeros(m,k); V = zeros(n,k);

% Prepare for Lanczos iteration.
v = zeros(n,1);
beta = norm(d); u = d/beta;
U(:,1) = u;

Lpt = @(x) (L*((L’*L)\x)); Lp = @(z) ((L’*L)\(L’*z));

for i=1:k
r = Lpt((J’*u)) - beta*v;
alpha = norm(r);
v = r/alpha;
B(i,2) = alpha;
V(:,i) = v;
p = J*(Lp(v)) - alpha*u;
beta = norm(p); u = p/beta;
B(i,1) = beta;
U(:,i+1) = u;

end
B = spdiags(B,[-1,0],k+1,k);

36 Chapter 3. Sensitivity Calculation

We introduced a “preconditioning matrix” L into the decomposition. Its role
will be clear in the next chapter. Using the decomposition it is possible to work
with the approximation of the sensitivities.

3.6.3 Dimensionality reduction using stochastic approximation

While Lancszos bidiagonalization is perhaps the most efficient algorithm to compute
a small number of singular values and vectors, an alternative has been proposed
recently [?]. It has advantage when parallel computing is available. While Lanczos
method is iterative by nature, the stochastic approximation is parallel by nature.

The basic idea is as follow. Let J be an n × k matrix. To approximate p

singular values and vectors we choose a random k×p+ � matrix Ω, where � is small
(say 3). We the compute the product

Y = JΩ

The matrix Y is “long and skinny” and thus we can easily compute its QR factor-
ization. Let

Y = �Q �R.

We set the approximate J to
�J = �Q �Q�J

which implies that it has the same singular values as �Q�J . Thus, it is possible to
work with �J rather than with J if needed.

3.7 Differentiating linear algebra expressions
Throughout this course we will differentiate expressions that involve matrices and
vectors. It is useful to be able to differentiate such expressions quickly.

To start, we recall the definition of the Jacobian. If f(x) is a function from
Rn to Rk then the Jacobian of f is a k × n matrix with entries

[J(x)]ij = [∇xf(x)]ij =
∂fi(x)
∂xj

Note that the dimensions of the Jacoban are k × n.
We now differentiate some simple quantities and discuss some confusing con-

ventions. We start with the linear multivariable function

f(x) = y
�

x = x
�

y =
�

i

xiyi

Differentiating with respect to x we obtain the vector

∇f =
�

∂f
∂x1

. . .
∂f

∂xM

�
=

�
y1 . . . yM

�
= y

�

Note that the derivative of a function f(x) should be written as a row vector if we
assume that x is a column vector. However, the convention is to store the gradient

3.7. Differentiating linear algebra expressions 37

of a scalar function as a column vector. That is we write ∇(x�y) = y and not
y
�. This can create some confusion so bare in mind the the convention is that the

transpose is used for 1D only. This can be highly confusing at times and we try
to point to this inconsistency when possible.

We now use the result to differentiate the multivariable function

f(x) = Ax =




a
�
1 x

...
a
�
Nx





where a
�
i = Ai,:. Note that in this case f is a vector f =

�
f1 . . . fM

�
. Each

entry in the vector f is similar to the one we just differentiated thus

∇f =




∇f1

...
∇fM



 =




a
�
1
...

a
�
M



 = A

Using this result we can now differentiate a quadratic form. Let

f(x) = x
�

Ax

To differentiate we use the product rule

∂f

∂x
=

∂x
�

Ax

∂x
=

�
x
� ∂Ax

∂x

��
+

∂x
�

A

∂x
x = Ax + A

�
x

If A is symmetric then we obtain 2Ax.
We now look at another type of derivatives generated by the Hadamard prod-

uct. The Hadamard product of two vectors x and y is defined as

f = x⊙ y =




x1y1

...
xMyM





It is easy to verify that
f = diag(y)x

where diag(y) is a diagonal matrix with y on its main diagonal. Therefore

∇f = diag(y)

Using the above we can now differentiate more complicated expressions. Con-
sider the expression

f(x) = (Ax)2 = (Ax)⊙ (Ax)

Differentiating with respect to x we obtain

∇f = ∇((Ax)⊙ (Ax)) = ∇(diag(Ax)Ax) = 2 diag(Ax)A.

38 Chapter 3. Sensitivity Calculation

Lets make this slightly more complicated. Consider now the expression

f(x) = v
�

�
(Ax)2 + 1

Similar expression arise in the minimal surface problem. Since v is independent of
x, to differentiate we need to differentiate

�
(Ax)2 + 1. Using the chain rule we

have

∇(
�

(Ax)2 + 1) = diag

�
1

2
�

(Ax)2 + 1

�
∇((Ax)2+1) = diag

�
1�

(Ax)2 + 1

�
diag(Ax)A

Putting this together we have

v
� diag

�
1�

(Ax)2 + 1

�
diag(Ax)A

note that the above expression is a row vector. If we use column vectors we have

∇f = (v� diag

�
1�

(Ax)2 + 1

�
diag(Ax)A)� = A

� diag

�
v�

(Ax)2 + 1

�
Ax

3.8 Programer note
The calculation of the sensitivities (or sensitivities matrix-vector) is crucial for the
solution of the inverse problem. It therefore very important to verify that the correct
sensitivity is computed. This verification can be done by the derivative test we now
present. Assume that we have c(m, u) = 0 and that we computed the Jacobians ∇uc

and ∇mc. Then, to test the Jacobians we take a random vector v and generate the
table of �c(u+hv,m)−c(u, v)� vs h where h is decreasing logarithmically and a table
of �c(u + hv,m)− c(m, u)− h∇ucv� vs h. By Taylor’s theorem the first difference
converge to 0 linearly while the second difference converge to 0 quadratically. If
you do not get quadratic convergence you have the wrong Jacobian! A similar
calculation should be done with the Jacobian with respect to m, ∇mc.

To demonstrate, we consider the forward problem of the form

c(m, u) = A(m)u− q = D
� diag(S exp(m))Du− q

Computing the derivative with respect to m we obtain that

∇mc = D
� diag(Du)S diag(exp(m)).

The following code test the derivative

3.8. Programer note 39

% define function and derivatives
C = @(u,m)(D’*sdiag(S*exp(m))*D*u - q);
dCdm = @(u,m)(D’*sdiag(D*u)*S*sdiag(exp(m)));
dCdu = @(u,m)(D’*sdiag(S*exp(m))*D);

% now test the derivatives
u = randn(size(D,2),1); m = randn(size(S,2),1);
v = randn(size(m));
f = C(u,m);
G = dCdm(u,m);
for i=1:10

h = 10ˆ(-i);
fp = C(u,m+h*v);
diff1 = norm(fp-f);
diff2 = norm(fp-f - h*G*v);
fprintf(’%3.2e %3.2e %3.2e\n’,h,diff1,diff2)

end

The following table was obtained using the above code

1.00e-01 7.58e+02 7.01e+01
1.00e-02 7.61e+01 7.04e-01
1.00e-03 7.62e+00 7.04e-03
1.00e-04 7.62e-01 7.04e-05
1.00e-05 7.62e-02 7.04e-07
1.00e-06 7.62e-03 7.04e-09
1.00e-07 7.62e-04 7.05e-11
1.00e-08 7.62e-05 8.49e-12
1.00e-09 7.62e-06 9.54e-12
1.00e-10 7.62e-07 8.87e-12

Obviously, as long as h is not too small, where machine precision takes over,
we see that reducing h in a factor of 10 reduces the linear approximation in a factor
of 100.

Although the derivative test is meant to test the derivatives it can also be used
to learn something about the function at hand. For example, consider the nonlinear
PDE

∇ · ρ(u)∇u = m

with ρ(u) = 1√
|Du|2+η

In this case a simple 1D discretization reads

c(m, u) = D
� diag

�
1�

|Du|2 + η

�
Du−m

and the derivative with respect to u can be computed as

∇uc = D
� diag

�
1�

|Du|2 + η

�
D −D

� diag
�

(Du)2

(|Du|2 + η) 3
2

�
D

The following matlab script test this approximation

40 Chapter 3. Sensitivity Calculation

t = 1e-8;
% define function and derivatives
C = @(u,m)(D’*sdiag(1./sqrt((D*u).ˆ2 + t))*D*u - m);
dCdu = @(u,m)(D’*sdiag(1./sqrt((D*u).ˆ2 + t))*D - ...

D’*sdiag((D*u).ˆ2./((D*u).ˆ2 + t).ˆ(3/2))*D);

% now test the derivatives
u = randn(size(D,2),1); m = randn(size(D,2),1);
v = randn(size(u));
f = C(u,m);
A = dCdu(u,m);
for i=1:10

h = 10ˆ(-i);
fp = C(u+h*v,m);
diff1 = norm(fp-f);
diff2 = norm(fp-f - h*A*v);
fprintf(’%3.2e %3.2e %3.2e\n’,h,diff1,diff2)

end

and the results are presented in the table below

1.00e-01 3.62e+01 3.62e+01
1.00e-02 1.58e+01 1.58e+01
1.00e-03 1.37e-04 8.51e-05
1.00e-04 5.55e-06 3.80e-07
1.00e-05 5.20e-07 3.59e-09
1.00e-06 5.17e-08 3.51e-11
1.00e-07 5.17e-09 1.57e-12
1.00e-08 5.17e-10 1.45e-12
1.00e-09 5.17e-11 1.27e-12
1.00e-10 5.17e-12 1.20e-12

This table is rather different than the one we have seen previously. Note that for a
step size of h = 10−2 no marked difference is observed between the first and second
order approximations. This implies that at least for the direction chosen here, the
problem is nonlinear and requires very small steps for the linear approximation to
be a good representative of the nonlinear problem. Thus, using the derivative test
we can learn not only about the correctness of the derivative but also about the
nonlinearity of the problem at hand.

3.9 Problems for chapter 3
Assume again the problem

∇ · σ∇u = q σ > 0

with Derichlet boundary conditions. Assume that a cell-centered discretization is
used for the problem as described in Chapter 2. Then, we have seen that the discrete
system can be written as

DIV
�
diag(Acfσ

−1)
�−1 DIV�u = q −DIV

�
diag(Acfσ

−1)
�−1

Bc uBC

1. Program the forward problem on an n1 × n2 × n3 uniform grid.

2. Compute the derivatives with respect to u, uBC and σ.

3.9. Problems for chapter 3 41

3. Program the derivatives and validate them using the derivative test.

4. For a problem of size 83 and σ = 1 compute the sensitivity matrix assuming
Q = I.

5. Assuming uBC = 0, compute the SVD decomposition of the sensitivity matrix
and plot the right singular vectors that correspond to λ1, . . . , λ10 and view the
singular vectors that correspond to smaller singular values. Make qualitative
comments about the behavior of the singular vectors.

6. In a semilogy curve plot the singular values of the problem. Can you comment
about the effective rank of the sensitivities?

42 Chapter 3. Sensitivity Calculation

